
ADVANCED PROGRAMMING IN C++
Basics

Patrick Bader · SS 2023

Hello World

#include <iostream>

using namespace std;

int main(int argc, char* argv[])
{

cout << "Hello World!\r\n";
return 0;

}

Input / Output

#include <iostream>
#include <string>

int main(int argc, char* argv[])
{

std::cout << "Type in your name:\r\n";
std::string name;
std::cin >> name;
std::cout << "Hello " + name;

return 0;
}

Namespaces

Prevent name collisions

Standard library uses std namespace

Defining names in a namespace:

namespace my_space {
// add declarations here
}

Using namespaces:
◦ Direct:

std::cout;

◦ Import single names:

using std::cout; // cout usable without std::

◦ Import entire namespace:

using namespace std; // no std:: necessary

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Strings

Use string class in the standard library: #include <string>
Variable definition: std::string first_name = "Jon";
Length: int len = first_name.length();
Concatenation: std::string name = first_name + " Doe";
Character access:
◦ Read single character: char initial = name[0];
◦ Change single character: name[0] = 'R';

Output: std::cout << name;
Important: No bounds checking is performed with the index operator []. If you want bounds checking, use the
.at() method: name.at(0) = 'R';

Dynamic Arrays

Vector class in the standard library: #include <vector>
Variable definition: std::vector<int> v = { 1, 2, 3, 4 };
Get current size: int s = v.size();
Appending: v.push_back(4);
Removing last Element: v.pop_back();
Single element access:
◦ Read single element: int i = v[3];
◦ Change single element: v[1] = 100;
Important: No bounds checking is performed with the index operator []. If you want bounds checking, use the
.at() method: v.at(0) = 100;

I/O Streams

I/O stream classes in the standard library:

#include <iostream>

Write to standard output:

int x = 10; float y = 3.1f;
std::cout << x;
std::cout << y;
std::cout << endl;
// equivalent with chaining:
std::cout << x << y << endl;

Read from standard input:

std::cin >> y;



Control Structures - Branches

if (5 < 10)
{

std::cout << "five is smaller";
}
else
{

std::cout << "five is larger or equal";
}

if (int i = 9; 5 < 10)
{

std::cout << "five is smaller";
}

Control Structures - Branches

int i = 10;
int j;

switch (i) {
case 2:
case 4:

j = 9;
break;

case 6:
j = 2;
break;

default:
j = 11;

}

Control Structures - Loops

int i = 10;
while (i >= 0) {

std::cout << "Count down: " << i;
--i;

}

do {
std::cout << "Condition at bottom";

} while (false);
for (int i = 0; i < 10; ++i) {

std::cout << "Iteration: " << i;
}

std::vector<int> v{ 1, 3, 7, 8 };
for (int e : v) {

std::cout << e;
}



(Free) Functions

Free functions do not belong to class instances

Are usually declared in the global scope or in a namespace

Behave like static methods in Java

Declaration:

int add(int a, int b);

Definition:

int add(int a, int b)
{

return a + b;
}

Functions at least have to be declared before they are used.

Primitive Data Types - Integer

Integer types:

char c; short s; int i; long l; long long ll;

Sizes are compiler dependent: char ≤ short ≤ int ≤ long ≤ long long
Initialized and used as in Java:

int x = 10;

There are unsigned versions:

unsigned int ui = 3;

Don‘t mix these with signed for arithmetic → unexpected results.

Primitive Data Types - Bool

bool b = true;

false implicitly casts to integer value 0
true implicitly casts to integer value 1
Integer value 0 implicitly casts to false
All other integer values cast to true

Primitive Data Types - Floating Point

Floating point types:

float f; double d; long double ld;

Formats are fixed for float (IEEE-754 32 bit) and double (IEEE-754 64 bit). long double is implementation
defined, usually 80 bit.

Initialized and used as in Java:

float y = 3.1f;

Conversions between integer and floating point types are done implicitly in C++!



Primitive Data Types - Enumerations

enum class Answer { Yes, No };

will probably be covered later in the course

Primitive Data Types - Indirection

Pointers:

float* ptr;

Contain the memory address at which some value of the respective type is located

References:

float f = 5.0f;
float& g = f;

Similar to pointers, however: always refer to a valid memory location Have to be assigned when declared and
cannot be reassigned


	Advanced Programming in C++ Basics
	Hello World
	Input / Output
	Namespaces
	Strings
	Dynamic Arrays
	I/O Streams
	Control Structures - Branches
	Control Structures - Branches
	Control Structures - Loops
	(Free) Functions
	Primitive Data Types - Integer
	Primitive Data Types - Bool
	Primitive Data Types - Floating Point
	Primitive Data Types - Enumerations
	Primitive Data Types - Indirection

